Self-energy function of quantum-dot states and resonance fluorescence
نویسندگان
چکیده
منابع مشابه
Energy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملFluorescence Resonance Energy Transfer in Quantum Dot-Protein Kinase Assemblies
In search of viable strategies to identify selective inhibitors of protein kinases, we have designed a binding assay to probe the interactions of human phosphoinositide-dependent protein kinase-1 (PDK1) with potential ligands. Our protocol is based on fluorescence resonance energy transfer (FRET) between semiconductor quantum dots (QDs) and organic dyes. Specifically, we have expressed and puri...
متن کاملSingle-molecule quantum-dot fluorescence resonance energy transfer.
Colloidal semiconductor quantum dots are promising for single-molecule biological imaging due to their outstanding brightness and photostability. As a proof of concept for single-molecule fluorescence resonance energy transfer (FRET) applications, we measured FRET between a single quantum dot and a single organic fluorophore Cy5. DNA Holliday junction dynamics measured with the quantum dot/Cy5 ...
متن کاملQuantum dot-based multiplexed fluorescence resonance energy transfer.
We demonstrate the use of luminescent quantum dots (QDs) conjugated to dye-labeled protein acceptors for nonradiative energy transfer in a multiplexed format. Two configurations were explored: (1) a single color QD interacting with multiple distinct acceptors and (2) multiple donor populations interacting with one type of acceptor. In both cases, we showed that simultaneous energy transfer betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2014
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/560/1/012006